Каменная «энциклопедия» Романского клюатра

Идеальный имидж преподавателя высшего учебного заведения

Освоение начертательной геометрии — это шаг к становлению конкурентоспособного специалиста
Актуальные проблемы таможенно-тарифного регулирования внешнеэкономической деятельности Таможенного союза
Куандыков К.Ж., Татанова Ж.Ж.

Использование Интернет технологий на уроках информатики
Шорр Е.Е.

Проектирование самостоятельных педагогических систем в условиях обучения САПР
Садыгилова М.А., Жаткамбаева Ж.Н., д.п.н. профессор.
Асапалиев М.К.

Освоение начертательной геометрии – это шаг к становлению конкурентоспособного специалиста
Корыкбаева А.Е., Усенбеков Ж.

ОБРАЗОВАНИЕ И НАУКА

Гаспар Монж сызба геометриясы пенин кезге калаушы
Сембаяева А., Усенбеков Ж.

Казахстанга көшірілген шеңер-їніс шаарының әлеуметтік-
сақсы сәзің жағдайынан
Мадалимова Л.М.

О трансформациях прецедентных имён в ранненово английской
драме
Нуржигитова М.М.

Ойын аркулы оқыту технологиясы
Сипаттаева М.К.

«Бабырнама» жадидеріндері мәдени сұхбаттары
Нурмухамбетова К.Ш.

Жаңа такырыпты жетік менгерту тәсілдері
Рысқаспбеков М.Д.

Некоторые пути повышения эффективности обучения по
начертательной геометрии
Сундатбаева А.А., Усенбеков Ж.
3. Курмановлев М.К. Хіміяны окутуучы қазіргі технологиялары.
 - Алматы, 2009.

Түйін
Бұл мәкаләде карбон қышқылағының негізіге ала атырып және такырыпты жетік менгерту максатында тұрғыға тәсілдер колданылғандығы туралы айттылған.

Аннотация
В данной статье рассматривается применение новых методов на основе изучения карбоновых кислот.

Summary
In this article is examined application of new methods on the basic of study of hydrocarboxylic acids.

УДК 514.18

НЕКОТОРЫЕ ПУТИ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ОБУЧЕНИЯ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ

Ж.Усенбеков, д.т.н., проф., А.А. Сундекбаева студент гр. ДИ-13-1
(Университет «Алматы», Академия дизайна и технологии «Сымбат»)

Скажи мне — и я забуду,
Покажи мне — и я запомню,
Дайте мне действовать самому —
и я научусь.

Древнекитайская мудрость

Сложный и динамичный характер педагогической деятельности, обусловленный необходимостью разработки различных вариантов содержания образования, использования возможностей современной дидактики в повышении эффективности образовательных структур, научном обосновании новых идей и технологий, определяют объективную потребность в совершенствовании системы подготовки педагогов.

В процессе подготовки будущих дизайнеров в академии дизайна и технологии «Сымбат» особое внимание уделяют графическим
дисциплинам, в том числе начертательной геометрии, как азбуке этих дисциплин.

Начертательная геометрия как предмет достаточно сложен для большинства студентов, так как является по содержанию специфической. Дисциплина рассматривает вначале не какие-то определенные объекты, а абстрактные точки, прямые и плоскости, что требует соответствующей мыслительной деятельности студентов. Чертеж в начертательной геометрии занимает ведущее положение, причем выполняется он в ортогональных проекциях и для уяснения требует определенных умственных усилий и пространственное воображение. Исходя из многолетнего опыта, можно сказать, что при изучении начертательной геометрии в первом семестре студенты не достаточно используют внутри и межпредметные связи, отсутствует перенос знаний, которые получены в средней школе. Причем, курс начертательной геометрии изучается в течение одного семестра и составляет всего 2 кредита, это является капля в море для изучения данной дисциплины, требующей большого внимания, сосредоточенность, абстрактное мышление. В этой связи вопросы, связанные с повышением эффективности обучения начертательной геометрии является актуальной задачей и для решения которой необходимо использовать арсенал современных методов и учет психологических особенностей студентов.

Ученые психологи выделяют различные типы памяти — слуховую, зрительную, двигательную и смешанную. Чтобы учебный материал по начертательной геометрии запоминался, необходимо использовать различные приемы развития памяти студентов. Поэтому необходимо не только слушать объяснения и смотреть, как преподаватель выполняет чертежи, но и самим выполнять графические иллюстрации, проговаривать алгоритм решения задачи, комментировать для себя сложные задачи. Из анализа психологической литературы учёные психологи отмечают, что процесс запоминания развивается, когда память наиболее усилена работает, когда она влечется и направляется с интересом [1]. Те слова, которые связаны с какими-либо личными переживаниями, запоминаются гораздо чаще, чем эмоционально — безразличные.

Личностные особенности памяти включают: индивидуальные для каждого человека сочетания видов памяти, особенности процессов запоминания и сохранения, типичные для каждого человека свойства памяти. Важной чертой является также профессиональная направленность памяти и ее место в структуре психических процессов и свойств личности.

Успешность запоминания, сохранения воспринимаемого в памяти во многом зависит от сосредоточенности человека, от его внимания, от
заинтересованности работой. Недаром говорят в народе: «Внимание — резец памяти: чем оно остree, тем глубже следы». Одной из причин того, что человек забыл какие-то факты, слова или мысли, является невнимательность к ним в тот момент, когда он их воспринимал, говорил о них или думал. Зачастую можно наблюдать, что человек, обладающий хорошей памятью, отстает от других только потому, что не заставляет себя быть внимательным и прилежным. Трудолюбие, внимательность, усидчивость неизмеримо усиливают возможности человеческой памяти, делают ее более гибкой и прочной, развивают способности человека и ведут к успеху.

Бессспорным является факт, что нельзя выучить весь материал начертательной геометрии за три дня, никакой памяти не хватит. Систематическая, без перегрузки учеба, заучивание малыми порциями в течение семестра с периодическими повторениями через 10 дней намного эффективнее, чем концентрированное заучивание большого объема информации в сжатые сроки сессии [2].

Практически бесполезно несколько раз подряд читать изучаемый материал, лучше, прочитав один раз, попытаться воспроизвести (хотя бы с ошибками и неточностями), затем, прочитав еще раз, воспроизвести снова. Такой прием способствует более прочному запоминанию, значительно повышает его продуктивность. Поэтому при изучении начертательной геометрии, теоретический материал лучше всего закреплять решением задач по данной теме.

Если учебный материал оказался сложным, не стоит «зубрить» его, нужно попытаться установить зависимость между элементами материала, изобразить графически схему, раскрывающую логику изложения темы, придумать для себя систему опорных сигналов [3], помогающих понять и осознать суть проблемы. Опорный сигнал должен напоминать о каком-то событии или факте, который помогут запомнить изучаемое. Это могут быть слова, фразы, графические изображения или формулы. Если в начале, набросав на листочке основные, узловые моменты изучаемого материала, в дальнейшем попробовать воспроизвести содержание мысленно или вслух, то в следующий раз будет достаточно одного взгляда на этот листок, чтобы вспомнить, о чем шла речь.

Образная память, будучи более древним функциональным образованием, по-видимому, является более стойкой, чем вербально-логическая (смысловая) [3]. Система опорных сигналов способствует осознанию структурно-логических связей материала и одновременно развитию ассоциативно-образного мышления. Ассоциации играют важную роль в процессе запоминания и воспроизведения. Запомнить что-либо —
значит связать запоминаемое с чем-то, вплести то, что подлежит запоминанию, в сеть уже имеющихся связей, образовать ассоциацию.

Нужно научиться их мысленно представлять, а для этого необходимо поработать с моделями, прорешать задачи. Нужно усвоить материал таким образом, чтобы знания могли быть применены в задаче, которую еще не решали. Для этого нужны особенно прочные представления. Часто пробелы именно в этих, базовых знаниях курса, подводят студента, не позволяя ему выйти на успешный уровень обучения в дальнейшем.

Психологи рекомендуют следующую формулу успешного обучения [5]: \(M + 4П \), где \(M \) — мотивация и четыре \(П \): принять информацию, понять информацию, помнить информацию и применять информацию. Для того чтобы применять информацию нужно приобрести особый навык в решении задач. Не нужно относиться к задаче начертательной геометрии, как к докучливой преграде. Сама жизнь есть сплошная задача.

Решение задач — естественная реальность, требующая работы собственной души, определяющая способы поведения человека и создающая предпосылки для формирования его характера, определенного типа личности.

Решения сложных задач по начертательной геометрии, в скором времени, доставить интеллектуальную радость. Безусловно, не может учение быть легким и радостным, это настоящая работа и тяжкий труд.

Настоящая мать учения не повторение, а применение. Поэтому при изучении графических дисциплин, теоретический материал лучше всего закреплять решением задач по заданной теме с применением интерактивной доски и тестовых заданий.

Психологи утверждают, что образность — это мощный инструмент мышления и, что возможно, именно недостаток образности в мышлении является причиной неудачи людей в решении сложных проблем нашего взаимосвязанного и взаимозависимого мира. Образность помогает визуализировать связи между различными частями проблем, поэтому она способствует творческому мышлению. Формирование мысленных образов и представлений одна из задач графического образования, которая решается при изучении начертательной геометрии и других графических дисциплин.

Представления — это не физические предметы, которые можно передавать из рук в руки или «перекладывать» из головы в голову, это формы определенных процессов в психике человека. Значит, они могут возникнуть в голове человека только в результате его собственной деятельности. Допустим, если испытываете затруднения в мысленном
представлении прямой частного положения, то рекомендуется изготовить из бумаги модель первого октanta – начертить оси проекций, надписать их названия, обозначить плоскости проекций. Помещая в эту модель карандаш или авторучку, сравнить возможные положения прямой (ее роль будет играть карандаш) и выяснить, какие проекции будут получаться на плоскостях проекций в зависимости от того, каким полем проекций прямая параллельна. Проекцией в данном случае можно считать тень от карандаша, если источник света расположен сверху (на горизонтальную плоскость проекций) или между наблюдателем и карандашом (проекция на фронтальную плоскость проекций). Модель октanta может быть использованы и в дальнейшем при изучении курса, пока не научимся мысленно «вспоминать» его, то есть пока не сформируются устойчивые пространственные представления.

В начертательной геометрии необходимо решать задачи, формирующие компетентность мысленного вращения объектов, которые непосредственно связаны с пространственным воображением. Одним из наиболее эффективных методов обучения начертательной геометрии являются разработка и применение, как в лекции, так и при решении задач на практических занятиях мультимедийных, анимационных презентаций и электронные лекции.

Студентам в процессе изучения начертательной геометрии, предлагаются мультимедиа презентации: лекции и хода решения задач, обучающие тесты для самопроверки, кроссворды и другие учебно-методические материалы, помогающие для более эффективного умения мысленного перемещения объектов в плоскости и пространстве. А также тесты помогающие закреплению информации в ходе познавательной деятельности и диагностированию полученных знаний. Результаты эксперимента показывают, что применение различного рода проблемных задач, анкетирования, тестов и др. с применением интерактивной доски способствуют повышению эффективности обучения, активизируют самостоятельную познавательную деятельность студентов и помогает им творчески подходить к обучению и воспитанию.

Литература:
2. Асапалев М.К. Проектирование технологии организации самостоятельной работы студентов. Монография, Каракол “Педагогика” 2002, с.228.
Ту́йин
Макалада съзба геометрия пәні бойынша оқықтының тәмді жолдары карастырылған. Осы максатты игеру үшін авторлар оқу ұрдісінің төрлі оқұ- едістемелік материалдар: электронды дәріс, мультимедиалық есептерді орындау бағдарламасы, әзбетінше даірылан, оқуға арналған тестер, кроссвордтар және басқалар оқу ұрдісін еңгізілген.

Аннотация
В статье рассматриваются вопросы повышением эффективности обучения начертательной геометрии. Для этой цели предлагаются, разработанные авторами, мультимедийные презентации, электронные лекции и хода решения задач, обучающие тесты для самопроверки, кроссворды и другие учебно-методические материалы.

Summary
The article examines the effectiveness of training increase descriptive geometry. For this purpose are available, developed by the authors, The multimedia presentations, lectures and course of solving problems, training for self-tests, crossword puzzles and other educational materials.

УДК 37:372.8

Болашақ тәрбиешілердің шығармашылық кабілетін қалыптастыру
мұмкіндіктері

Г.У. Кулжабаева Университет Алматы
Қ.А. Яснов атындағы ХКТУ

Жалпы педагогика және этнopedagогика кафедрасының қызметчесі
Ж. Сейткулова

Студенттерді шығармашылық баулу үшін қажеттілік психологиялық дайындықта өткізу. Психологиялық дайындық, яғни, педагогиялық психологиялық есери шығармашылық кезенде студенттің шабыттың орта жылшы, кұлыптырмыш, еліктіріп отырады. Шығармашылық шеберлік үшін студентке оқытушының бөлім пируологиялық есери мүмкіндік болмайды:
- «сениң қолынан бәрі келеді », «сен қабілеттісін», «окың», «үйрен»
 деп, студенттің еркін билеп, сенім білдіру;